• 回答数

    5

  • 浏览数

    309

亿万资金
首页 > 工程师考试 > 数据挖掘工程师

5个回答 默认排序
  • 默认排序
  • 按时间排序

土偶寄宿制

已采纳

这要根据需要上报的数据来看,一般如果没有那种要实时上报的数据的话,就还好,有时候一些特定的节假日或者搞活动的时候可能会忙一...

数据挖掘工程师

292 评论(11)

真理在朕

这东西还能考证呢?具体说说

166 评论(12)

雨天啾啾酱

一般是比较大的企业会有这种岗位需求,主要是通过大数据,在其中通过数据挖掘的相关算法进行分析,根据业务需求,挖掘到数据中有价值的东西

305 评论(14)

Cathyshenzhen

数据挖掘领域是一个独特的行业,通常的招聘面试方法可能不大适用于本行业的特点。在招聘一个合格的数据挖掘工程师时,公司一般关注以下三个方面:他聪明吗?聪明意味着能透过复杂的信息建构问题并以正确的方式加以解决。聪明人还能从失败中获取经验。他能否专注于项目?专注意味着在各种困难的环境内,仍能独立或合作完成项目。他是否能与团队一起工作。团队合作需要很好的沟通能力,工作中涉及到的概念、问题、模型、结论等都需要成员之间正确的沟通方能加以明确。为了解候选人是否具有数据挖掘工程师的潜质,需要一小时的面试,主要通过以下五个环节:1、简介如同交谈之初的寒暄一样,简介是使候选人放松下来。可以先介绍一下公司本身的情况,再回答对方的一些疑问。如果问题很复杂,可以将回答放到面试的最后阶段再处理。2、关于数据挖掘项目这是最为重要且耗时的面试阶段,询问候选人最近接手的数据挖掘项目的情况和处理方式。要提问的方面包括:他一开始是如何描述这个项目的项目持续了多长时间这个项目的关键问题是什么问题是如何得到解决的在数据挖掘项目中最为困难的阶段是什么最有趣的阶段又是什么在他眼里,客户是怎么样的团队的其他成员又是如何表现的从中获得了什么样的经验在这个面试阶段,不仅要提问关于“what”的问题,还要很多关于“why”的问题。因为优秀的数据挖掘工程师要能面对客户,清晰的论证并支持其提出的观点。3、关于数据挖掘的流程考察候选人对于工作流程的认识是必要的,如果他谈到了跨行业数据挖掘流程规范(CRISP-DM)意味着好兆头。有很多时候,候选人对这些规范不以为然。虽然说从不同的角度来看待问题是一种创新,但是创新也需要建立在坚实在流程标准之上。因为它可以保证我们不会出现大的纰漏。必要的时候,可以用白板让候选人画出流程图。并让他评价这些工作中最为重要或需要反思的地方。因为建模工作不可能一次完成,反复的提炼问题、建立模型的情况是经常遇到的。另外可以在某个挖掘流程进行深入考查,例如询问对方如何避免过度拟合,如何从大量的候选变量中进行筛选,如何评价或比较模型的效果。4、解决问题软件公司的面试一般会包括“编码测试”,考查数据挖掘工程师也应该如此。一种可以参考的作法是提供一份存在缺陷的分析报告。让候选人对报告进行研究,表达报告中结论的意义,提出其中所存在的问题或不足,提出改进或补救的方法。5、收尾在面试的最后阶段,需要回答候选人的其它提问,并使之相信本公司在本行业中的优势地位,以及在职业生涯中的作用。在完成面试后,需要立即将面试记录进行整理存档。面试是一件苦差事,但也是一个交流学习的机会。通过面试可以了解到其它人遇到的问题,以及他们是如何解决的。

214 评论(9)

汉朝文帝

数据挖掘工程师是数据师(Datician['detn])的一种。是从大量的数据中通过算法搜索隐藏于其中知识的工程技术专业人员。这些知识可用使企业决策智能化,自动化,从而使企业提高工作效率,减少错误决策的可能性,以在激烈的竞争中处于不败之地。数据挖掘工程师的职责:1、根据自己对行业,以及公司业务的了解,独自承担复杂分析任务,并形成分析报告;2、相关分析方向包括:用户行为分析、广告点击分析,业务逻辑相关以及竞争环境相关;3、根据业务逻辑变化,设计相应分析模型并支持业务分析工作开展。数据挖掘,从字面上理解,就是在数据中找到有用的东西,哪些东西有用就要看具体的业务目标了。最简单的就是统计应用了,比如电商数据,利用用户的浏览、点击、收藏、购买等行为推断用户的年龄、性别、购买能力、爱好等。想了解更多关于数据挖掘工程师的内容,推荐上CDA数据分析师的课程。课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”。真正理解商业思维,项目思维,能够遇到问题解决问题。点击预约免费试听课。

134 评论(12)

相关问答