• 回答数

    4

  • 浏览数

    96

82海王子82
首页 > 工程师考试 > 大数据管理工程师考试难度

4个回答 默认排序
  • 默认排序
  • 按时间排序

小蘑菇少吃点

已采纳

大数据从事的是开源工作,更倾向于“研发”,能够重新激起程序员研发程序的热情,职业生涯有了新的追求,这意味着大数据会成为值得程序员长期奋斗不断突破的工作;其次,由于大数据属新兴领域,专业人才比较缺乏,高端人才更是企业争抢的对象,薪资上升容易,职业发展潜力巨大。二、大数据人才薪资如何?做技术编程也是不错的,不过目前大数据是个趋势,稍微有实力点的企业都在上大数据项目,而Hadoop本身又是编程开发的,再加上Hadoop工程师普遍比纯技术编程开发要高30%以上,所以有很多搞技术编程的都在往hadoop大数据方向转。做技术编程的人已经比较多了,很多人工作4~5年月薪也难上2万,能上万的更是寥寥。但Hadoop很多人只1年经验就拿2万以上了。所以很多现在待遇还不错的人也在学大数据,主要也是考虑未来发展天花板的问题。大数据工程师的工作难度大吗?首先我们先了解一下大数据工程师们需要处理哪些工作,根据工作内容,大家就能够在心中有个基本的概念。在工作岗位上,大数据工程师需要分析优化系统,解决系统运行中的稳定性问题;负责大数据基础设施框架的维护及二次开发,如kafka、flink、hbase等,负责进行数据采集、处理、分析、统计、挖掘工作等等。大数据工程师的工作累吗?除开以上工作之外,大数据工程师还需要负责数据仓库、数据集市建设,通过离线、实时方式接入各数据源数据;根据业务需求对数据、清洗、处理、计算,建模等工作,负责 即时查询工具、固定报表、运营数据产品、Dashboard等产品的设计、研发及应用等等。

大数据管理工程师考试难度

325 评论(10)

年糕年糕熊

不难,不过很大程度上还是得取决于你对IT行业的热爱,我一开始工作的时候纯粹是做Java开发,和大多数Java猿一样天天搞增删改查,但是有段时间公司要摸索大数据,然后领导就让我顶上了。刚开始什么Hadoop,Kafka等等是各种不懂,只会写hive,毕竟我有SQL基础。再后来发现hive实现一些东西很麻烦,就开始学习spark。后来又觉得学得很零零碎碎,就干脆在慕课网找了一套大数据开发的课程,细读慕课网上的教辅资料,重复看老师录制好的视频,每次都有不同的体会,我就这样不断深入学习Hadoop、Spark、Flink等等大数据开发工程师要具备的技能,现在也是能够达到中级大数据开发岗位能力标准了。

201 评论(9)

冷暖自知66暖暖

不好考。这种职位一般有很多人竞争而且要求比较高,得需要很高的水平。大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。

91 评论(13)

乐调人生百味

大数据近年来越来越火,因为有了它,好像什么行业都能精准分析。但是,大数据本身的发展却很少有人分析。近日,国家信息中心、南海大数据应用研究院联合发布了《2017中国大数据发展报告》,首次把中国大数据本身的发展特点和存在的问题,全面呈现了出来。用大数据来了解大数据这份报告全面汇聚了国家发改委互联网大数据分析中心、国家信息中心、“一带一路”大数据中心所掌握的30多个种类,总计40多亿条相关数据,综合运用多种大数据分析方法,对我国大数据产业发展进行了全面分析。所以,称得上是用大数据来了解大数据。北京、广东、上海大数据发展位居前三报告显示,我国大数据发展总体处于起步阶段。但是从地域上看,就有意思了。国家信息中心信息化研究部副主任、南海大数据应用研究院院长于施洋指出:“从地域分布,从各个省来说,北京排第一,这个不足为怪,东部沿海地区这些省份排在前面,大家也都能够想象。但是在西南地区,四川、重庆、贵州这三个地方异军突起,是我们大数据发展的第二个增长极。”产业落后是地方大数据发展的突出短板具体来看,各省份大数据发展指数的排名中,贵州、重庆、四川,紧随东部沿海省份,全部排进了前十名,领先任何一个中部省份。分析认为,这主要是地方政策引领的结果。这三个西部省市,早早都把大数据产业的发展作为重点工程来打造。对于这种“弯道超车”现象,国家行政学院教授汪玉凯建议,这些地方下一步可以重点考虑产业落地问题:“它们是首先抓住了一个概念,然后占了一个先机。但是相对能够落地的产业应用还是比较少的,这是它们的软肋。所以我认为,你们一定要注意应用,要打造你的优势。”人才短缺问题日益突出报告指出,数据管理环节漏洞较多,是大数据发展面临的首要问题,包括由此引发的运营成本过高、资源利用率低、应用部署过于复杂等难点。而我们更关注的是另一大问题。我们会发现,大数据领域里数据是有了,但是能驾驭这些数据的人是极其匮乏的。比如说大数据的专业人才方面,现在分析类的人才,市场是供不应求,缺口非常大,而项目管理类的人才,供给又远远大于需求,所以结构上还不平衡。高端的人才奇缺,这是最突出的问题。”发展大数据要谨防人才“眼高手低”大数据的核心就是数据的抓取与分析,而分析环节,目前离不开人工设置变量,建立模型。所谓“差之毫厘,谬之千里”,大数据分析对人才的要求很高。但首份大数据发展报告却揭示,我国大数据人才能搞管理的不少,真正能做分析的却远远不够,这是典型的“眼高手低”,势必伤害大数据产业的长远发展。人才短板可以从教育方面着手弥补,探索新的人才培养模式。比如,将高校大数据系列课程分为理论教学和技术教学两方面;比如社会上优质的专注大数据人才培养机构等多方面进行。

140 评论(10)

相关问答