• 回答数

    10

  • 浏览数

    126

末末很烦躁
首页 > 工程师考试 > 大数据可视化工程师培训

10个回答 默认排序
  • 默认排序
  • 按时间排序

迷茫的前途

已采纳

大数据目前属于技术性比较高的行业,在一线大城市学习能够接触到前沿技术,后期找工作也非常有利。随着互联网的发展,很多企业随着业务发展要求服务器程序更稳定更可靠,因此对于大数据人才的要求越来越高。

学大数据最好具备一定的编程基础,根据自己的情况选择培训班,因为不同的培训机构有不同的授课方式,像大数据这类的IT技术学习,通过培训班学习其实是最有利学员去掌握专业知识的,通过老师系统的教学,让学员更加直接的学习大数据技术。

大数据培训班讲师在大数据领域积累了丰富的教学经验,理论素养扎实,采用完善的教学体系和富有创意的教学模式,培养学生的技术开发底蕴、专业技能和实战能力,使学生获得丰富的专业知识和开阔的时代发展视野。

老师是一个人学习效果的重要因素,好的老师有好的教育方法和教育目标,帮助学生更简洁的了解一件复杂的学科,这对于老师的素质的考察时非常严格,除此之外就是大数据的课程内容设置。

大数据培训机构所提供的大数据学习路线,更是比较完整的提供了大数据开发知识体系,主要内容包含Linux和Hadoop生态体系、大数据计算框架体系、云计算体系、机器学习&深度学习。如果你根据所提供的大数据学习路线进行相关的系统学习,那么你可以对学习大数据需要掌握的知识有个清晰的了解,并快速入门大数据开发。

最为重点的是大数据培训可以保证课程体系和实战性的结合,培养实操能力,为企业输送了大量的优秀大数据技术人才也是有证可循的。学大数据建议选择传智教育,优质教学资源,系统地实战项目相关的课程,定期进行职业技能测试测试,为学员找工作提前做好准备;在毕业找工作前集中为每位学员有针对性地做简历指导、面试模拟训练;在学员从拿到offer到入职公司试用期期间,对于学员在人事和入职方面的问题给予指导。

大数据可视化工程师培训

105 评论(14)

金德易BOSS

任何行业都有大数据,譬如电信行业,互联网行业,电力,交通,教育,医疗等等。 随着业务的增长和新业务的更新,并且数据的来源越来越多,数据量的增加和数据管理的需求,都促使各个行业有大数据分析的需要。

84 评论(8)

小女孩不懂事

有相关的基础学习起来会轻松一些,没有基础的话,难度会有些,投入努力和汗水,系统的学习大数据开发,是能够有一定成就的。掌握到大数据开发的专业技术,就业方向有:大数据系统研发,大数据应用开发,大数据分析等。

327 评论(11)

sophialili

参加大数据开发培训需要掌握以下几个方向的内容。

阶段一:JavaSE基础核心

1、深入理解Java面向对象思想

2、掌握开发中常用基础API

3、熟练使用集合框架、IO流、异常

4、能够基于JDK8开发

阶段二:Hadoop生态体系架构

1、Linux系统的安装和操作

2、熟练掌握Shell脚本语法

3、Idea、Maven等开发工具的使用

4、Hadoop组成、安装、架构和源码深度解析,以及API的熟练使用

5、Hive的安装部署、内部架构、熟练使用其开发需求以及企业级调优

6、Zookeeper的内部原理、选举机制以及大数据生态体系下的应

阶段三:Spark生态体系架构

1、Spark的入门安装部署、Spark Core部分的基本API使用熟练、RDD编程进阶、累加器和广播变量的使用和原理掌握、Spark SQL的编程掌握和如何自定义函数、Spark的内核源码详解(包括部署、启动、任务划分调度、内存管理等)、Spark的企业级调优策略

2、DophineScheduler的安装部署,熟练使用进行工作流的调度执行

3、了解数据仓库建模理论,充分熟悉电商行业数据分析指标体系,快速掌握多种大数据技术框架,了解认识多种数据仓库技术模块

4、HBase和Phoenix的部署使用、原理架构讲解与企业级优化

5、开发工具Git&Git Hub的熟练使用

6、Redis的入门、基本配置讲解、jedis的熟练掌握

7、ElasticSearch的入门安装部署及调优

8、充分理解用户画像管理平台的搭建及使用、用户画像系统的设计思路,以及标签的设计流程及应用,初步了解机器学习算法

9、独立构建功能完全的企业级离线数据仓库项目,提升实战开发能力,加强对离线数据仓库各功能模块的理解认知,实现多种企业实战需求,累积项目性能调优经验

阶段四:Flink生态体系架构

1、熟练掌握Flink的基本架构以及流式数据处理思想,熟练使用Flink多种Soure、Sink处理数据,熟练使用基本API、Window API 、状态函数、Flink SQL、Flink CEP复杂事件处理等

2、使用Flink搭建实时数仓项目,熟练使用Flink框架分析计算各种指标

3、ClickHouse安装、使用及调优

4、项目实战。贴近大数据的实际处理场景,多维度设计实战项目,能够更广泛的掌握大数据需求解决方案,全流程参与项目打造,短时间提高学生的实战水平,对各个常用框架加强认知,迅速累积实战经验

5、可选掌握推荐和机器学习项目,熟悉并使用系统过滤算法以及基于内容的推荐算法等

6、采用阿里云平台全套大数据产品重构电商项目,熟悉离线数仓、实时指标的阿里云解决方案

阶段五:就业指导

1、从技术和项目两个角度按照企业面试、

2、熟悉CDH在生产环境中的使用

3、简历指导

以上为大数据培训所要掌握的内容,当然也可以尝试自学的。

198 评论(10)

君和家人

大数据好学吗?该不该转行大数据?这是很多同学心中的疑惑,就来给大家解答一下这些问题。第一个问题:大数据好不好学?总结了一下几种情况,供参考。1.对于有开发经验的同学来说,学大数据还是比较容易的,比如你现在是做JAVA开发的,那么你转行大数据做JAVA大数据开发,只需要把大数据框以及相关大数据技术学到,再辅以一定的项目练习,基本就可以干活了;如果你现在是做的Python开发,同样你也只需要学好大数据框架以及相关技术,再辅以相关项目就可以从事Python大数据开发了。2.如果你是零基础,学习能力一般,在理解概念会稍微慢一点,比如学到JAVA面向对象的时候,这部分同学就比较懵了,但是只要肯付出,愿意多问,愿意去琢磨,也能得到理想的结果。3.零基础学习能力很强,比如毕业于211、985高校,相对来说,学起来就比较轻松。在我们的大数据培训班,50%以上都是这样的学生,不得不说,学习能力强,学啥都快,不光是编程。第一种有开发经验,他们会去主动学习;第三种学习能力强,他们相信自己能学会。但第二种他们缺乏自信,也是比较犹豫的一部分人。三种人中,也以第二种学生居多。如果想转行,三点建议,可供参考。1.不要犹豫,先学。先找学习资料,从零开始学,只有你真的开始去学了,才能知道好不好学。2.统招本科学历,学大数据,找大数据开发工作。目前一线城市的企业,对大数据开发工程师的学历要求都是本科。3.大专学历,学JAVA,找JAVA开发工作。学历不够,先把JAVA学好,找一份JAVA开发工作,如果对大数据感兴趣,可做2年JAVA开发后,再转大数据,用开发经验来弥补学历的短板。希望对你有帮助~

253 评论(10)

逛街搵食人

新手学习大数据需要具备基础一数学知识

数学知识是数据分析师的基础知识。

对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。

对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。

而对于数据挖掘工程师,除了统计学以外,各类算法也需要熟练使用,对数学的要求是最高的。

新手学习大数据需要具备基础二分析工具

对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。

对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。

对于数据挖掘工程师……嗯,会用用Excel就行了,主要工作要靠写代码来解决呢。

新手学习大数据需要具备基础三编程语言

对于初级数据分析师,会写SQL查询,有需要的话写写Hadoop和Hive查询,基本就OK了。

对于高级数据分析师,除了SQL以外,学习Python是很有必要的,用来获取和处理数据都是事半功倍。当然其他编程语言也是可以的。

对于数据挖掘工程师,Hadoop得熟悉,Python/Java/C++至少得熟悉一门,Shell得会用……总之编程语言绝对是数据挖掘工程师的最核心能力了。

新手学习大数据需要具备基础四业务理解

业务理解说是数据分析师所有工作的基础也不为过,数据的获取方案、指标的选取、乃至最终结论的洞察,都依赖于数据分析师对业务本身的理解。

对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。

对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。

对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。

新手学习大数据需要具备基础五逻辑思维

这项能力在我之前的文章中提的比较少,这次单独拿出来说一下。

对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。

对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。

对于数据挖掘工程师,逻辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。

新手学习大数据需要具备基础六数据可视化

数据可视化说起来很高大上,其实包括的范围很广,做个PPT里边放上数据图表也可以算是数据可视化,所以我认为这是一项普遍需要的能力。

对于初级数据分析师,能用Excel和PPT做出基本的图表和报告,能清楚的展示数据,就达到目标了。

对于高级数据分析师,需要探寻更好的数据可视化方法,使用更有效的数据可视化工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。

对于数据挖掘工程师,了解一些数据可视化工具是有必要的,也要根据需求做一些复杂的可视化图表,但通常不需要考虑太多美化的问题。

138 评论(14)

唯一201314

大数据零基础可以学习,想要学习大数据推荐选择【达内教育】。【达内教育】优点具体如下:1、培训课程就业保障:达内人才服务团队是达内学员的就业保障核心,人才服务团队为学员提供全方位的就业辅助服务,包括职业素质培训、就业指导、模拟面试等多种就业技能,并同时为学员提供企业双选会、专场招聘会、推荐面试、等各种帮助学员就业的服务,帮助企业与学员对接,是学员就业的坚强后盾。2、培训采用双师教学:助教老师陪伴和监督,与国内外知名企业建立多样化的合作方式和一站式的服务体系。【大数据】可以从事以下岗位:1、数据分析师、不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。2、数据挖掘工程师、做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,基本的比如线性代数、高等代数、凸优化、概率论等。感兴趣的话点击此处,免费学习一下想了解更多有关大数据的相关信息,推荐咨询【达内教育】。该机构是引领行业的职业教育公司,致力于面向IT互联网行业培养人才,达内大型T专场招聘会每年定期举行,为学员搭建快捷高效的双选绿色通道,在提升学员的面试能力、积累面试经验同时也帮助不同技术方向的达内学员快速就业。达内IT培训机构,试听名额限时抢购。

125 评论(14)

饿魔娃娃

如需学习大数据,推荐选择【达内教育】。大数据的前景很不错。一方面国家大力支持大数据行业的发展,已经上升为国际战略的今天,大数据人才正在拥有更多的发展机会。另一方面许多的领域都是缺乏这方面的人才,腾讯阿里等互联网大厂都是高薪招聘相关人才。大数据的择业岗位有以下这些:1、【大数据开发】方向所涉及的职业岗位为:大数据工程师、大数据维护工程师、大数据研发工程师、大数据架构师等。2、数据挖掘、数据分析和机器学习方向所涉及的职业岗位为:大数据分析师、大数据高级工程师、大数据分析师专家、大数据挖掘师、大数据算法师等。3、大数据运维和云计算方向对应岗位:大数据运维工程师。感兴趣的话点击此处,免费学习一下想了解更多有关大数据的相关信息,推荐咨询【达内教育】。达内与阿里、Adobe、红帽、ORACLE、微软、美国计算机行业协会(CompTIA)、百度等国际知名厂商建立了项目合作关系。共同制定行业培训标准,为达内学员提供高端技术、所学课程受国际厂商认可,让达内学员更具国际化就业竞争力。达内IT培训机构,试听名额限时抢购。

168 评论(11)

jjgirl2008

1、大数据开发工程师大数据开发工程师,很多公司都在招聘的热门技术人才,工资也是相对于其他方向更高一些。想要成为大数据开发工程师需要掌握计算机技术、hadoop 、spark、storm开发、hive 数据库、Linux 操作系统等知识,具备分布式存储、分布式计算框架等技术。2、大数据分析师大数据分析师是数据师的一种,指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。作为一名数据分析师、至少需要熟练SPSS、STATISTIC、Eviews、SAS、大数据魔镜等数据分析软件中的一门,至少能用Acess等进行数据库开发,至少掌握一门数学软件如matalab、mathmatics进行新模型的构建,至少掌握一门编程语言。总之,一个优秀的数据分析师,应该业务、管理、分析、工具、设计都不落下。3、数据挖掘工程师做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,基本的比如线性代数、高等代数、凸优化、概率论等。经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapReduce写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。4、大数据可视化工程师随着大数据在人们工作及日常生活中的应用,大数据可视化也改变着人类的对信息的阅读和理解方式。从百度迁徙到谷歌流感趋势,再到阿里云推出县域经济可视化产品,大数据技术和大数据可视化都是幕后的英雄。大数据可视化工程师岗位职责:1、 依据产品业务功能,设计符合需求的可视化方案。2、 依据可视化场景不同及性能要求,选择合适的可视化技术。3、 依据方案和技术选型制作可视化样例。4、 配合视觉设计人员完善可视化样例。5、 配合前端开发人员将样例组件化。

248 评论(8)

嗯哼,嗯哼

这个应该要看机构的师资情况,学习环境,学习氛围,课程设置等因素来考虑,您可以实地考察一下

关于大数据学习:

一、基础部分:JAVA语言 和 LINUX系统

二、数据开发:

1、数据分析与挖掘

一般工作包括数据清洗,执行分析和数据可视化。学习Python、数据库、网络爬虫、数据分析与处理等。

大数据培训一般是指大数据开发培训。

大数据技术庞大复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。

2、大数据开发

数据工du程师建设和优化系统。学习hadoop、spark、storm、超zhi大集群调优、机器学习、Docker容器引擎、ElasticSearch、并发编程等;

课程学习一共分为六个阶段:

334 评论(9)

相关问答