无敌花花Nancy
彭少涛 刘川庆 朱卫平 孙斌 刘学鹏
作者简介:彭少涛,男,1970年11月生,2007年获西南石油大学硕士学位,现为高级工程师、煤层气开发利用国家工程研究中心储层改造所所长,长期从事石油、天然气、煤层气勘探开发技术研究与管理工作,通信地址:北京市海淀区中关村环保科技园地锦路7号1幢,邮编:100095,E-mail:
(煤层气开发利用国家工程研究中心,北京 100095)
摘要:鄂尔多斯盆地东缘保德区块以中低阶煤为主,分布十分广阔,虽然其含气量不高,但其煤岩厚度大,渗透性好,机械强度高,具有高产潜质。目前,保德区块压裂施工中面临压裂液滤失极大,造缝不充分,加砂困难的问题,易导致施工失败,影响压裂效果。本文针对2010年压裂施工中所遇到的难题,开展了煤层气井地质与压裂施工资料的统计与分析,总结了问题的原因,提出了从优选压裂液体系、优化支撑剂组合、调整施工工艺入手的技术对策;该研究成果可为今后保德区块中低阶高渗煤层的压裂工作提供可参考的依据,从而为储量目标的完成与产能建设提供技术保障。
关键词:保德区块中低阶煤压裂技术对策
The Problems and the Corresponding Technical Strategies of Low Rank Coal Fracture in Baode Block
PENG Shaotao LIU Chuanqing ZHU Weiping SUN Bin
(China United CoalBed Methane National Engineering Research Center, Beijing 100095, China)
Abstract: Low rank coal is the main kind of coal in Baode block of Ordos Basin, which is very broadly dis- the gas content is not high, it has a high yield potential for big coal thickness, good permeability and high mechanical , it easily leads to fracturing failure for enormous filtration and insufficient fracture extension, which affect the gas production this article, aiming at the fracturing problems in 2010, we started statistics and analysis of geological and fracturing summarizing the reasons, we pres- ented some technical strategies, which include preferring fracturing fluid, proppant portfolio optimization and process research fruit in this article will provide a basis for reference of low rank coal fracture, and also offer technical support for production capacity building.
Keywords: Baode block; low rank coal; fracturing strategy
1 前言
煤层气是一种非常规的天然气资源,是成煤过程中生成的以甲烷为主要成分的各种烃类气体,经运移、散失后,仍保留在煤层和顶底板岩石中的部分。煤层中游离气很少,煤层甲烷主要以吸附状态(70%~90%)附在煤层微孔隙内表面上。煤层吸附甲烷的能力随着压力升高而增大,饱和后以游离态存在,少量溶于水中[1]。煤层的裂隙系统是煤层甲烷运移的主要通道,但其连通性差、渗透率低,难以形成具有高导流能力的通道。为了开采这种气体,必须采出大量的水,降低裂隙系统的压力,气体从煤层表面上解吸进入裂隙系统。为了使气体从裂隙系统流入井筒,必须在煤层的天然裂隙与井筒之间建立起有效的连通孔道,而产生这种连通孔道的最有效的方式是对煤层进行压裂。
2 保德区块中低阶煤特性
保德区块位于鄂尔多斯盆地东北缘,晋西挠褶带的北端;总体形态为向西缓倾的大型单斜构造,地层倾角较为平缓;构造简单,走向近北东。区内煤岩Ro介于,平均,煤阶较低,以气煤为主,次为肥煤,属于中低阶煤。虽然煤阶较低,含气量不高,但其埋藏较浅,渗透性好,具有高产潜质。
通常情况下,中低阶煤具有割理发育,渗透率较高,机械强度相对高,含气量低的特点。通过查阅相关资料,证实:
(1)保德区块煤岩割理较为发育,面割理密度在5~13条/5cm,渗透率较高,介于,一般在;
(2)根据煤芯岩石力学参数实验,弹性模量为,泊松比为;对比韩城、吉县区块(弹性模量在1355~9755,泊松比在)来说,保德区块机械强度相对高;
(3)区内发育两套主力煤层,从含气量来看:X1#煤层平均含气量为煤层平均含气量为;相比于韩城区块(约15m3/t)和大宁—吉县区块(约)来说,保德区块含气量较低。
此外,保德区块煤岩还具有其他一些特点,如:
(1)厚度大、夹矸多;保德区块主要含煤地层为二叠系山西组和石炭系太原组,煤层厚度大、分布稳定。X1#煤层平均厚,含夹矸1~5套,平均套;X2#煤层平均厚,含夹矸0~3套,平均2套;
(2)部分煤层段具有软煤岩特征;通过对保德区块测井资料统计分析发现,大部分井X1#煤层上部、X2#煤层下部呈现低密度、低电阻、高声波时差,为软煤特征。
3 保德区块中低阶煤压裂存在的问题
根据保德区块煤岩特征,结合压裂液评价实验结果,2010年优选了活性水作为保德区块主要采用的压裂液体系,并提出了大排量、大液量、射孔避开软煤层等压裂思路。
从施工情况来看,成功率仅为80%。说明2010年采用的压裂工艺不能完全满足保德区块煤层改造的需要。因此,有必要开展影响保德区块活性水压裂成功率的原因分析,并提出针对性强的技术对策,提高压裂施工成功率;同时,也为今后其他区块中低阶煤开发提供技术储备。
为了找到影响压裂成败的因素,提高施工成功率,我们对2010年压裂失败层的原因进行了分类统计(见图1)。
图1 2010年保德区块压裂失败原因分类统计
从图1可以看出,煤层因素占,主要表现为加砂困难,是影响保德区块压裂一次成功率低的主因。煤层因素涉及的面比较广,只有对其进行更为细化的分析,找到影响一次成功率的关键性因素,才能提出针对性强的压裂工艺改进措施。
渗透率高造成压裂液滤失大
保德区块渗透率较高,一般在,远高于其他区块的煤层渗透率。因此,施工成功率较低的原因很可能是压裂液滤失大,造缝效率低,引起缝内脱砂,导致砂堵失败。为了验证是否由于滤失过大造成砂堵的原因,我们引入了压后压降分析技术,通过G函数曲线计算压裂液滤失效率。
G函数压降分析法最早由Nolte[2]提出,20世纪80年代中期在国内外油田得到了广泛的应用。压后关井裂缝闭合期,压力动态在很大程度上有压裂液滤失特征以及裂缝形态所决定,所以可用来确定裂缝几何参数,压裂液滤失系数以及液体效率。图2是我们根据A井X2#煤层压后压力实时数据绘制的G函数曲线图,然后根据压力曲线的斜率可计算出排量的活性水滤失系数为×10-3m/;同理,对其他一些层的压降数据进行计算,得到其滤失系数在()×10-3m/。由此说明,保德区块采用活性水压裂滤失非常大,是造成成功率低的一个重要原因。
割理发育、煤层非均质性强造成压裂时产生多裂缝
保德区块割理发育,面割理密度为5~8条/5cm。割理发育,就会影响并局部改变煤层气藏中的地应力分布格局,水力裂缝不再是沿最大地应力方向扩展的单一裂缝,而是形成复杂的多裂缝(俗称菊花缝),难以形成主裂缝,造成地层加砂困难,易砂堵。
这是因为,煤层割理发育,割理处表现出的是一种弱面胶结,依据水力压裂人工裂缝的启裂机理是弱面破裂的理论,煤层压裂过程中将产生大量的分支裂缝,同时由于保德地区X1#夹矸较多,射孔时人为将X1#分为多段,这同时加剧了多裂缝产生的几率。
多裂缝的产生一方面消耗了驱动裂缝扩展的部分能量,另一方面将严重影响人工裂缝的宽度,造成支撑剂难以进入人工裂缝,形成砂堵。因此对于易于产生多裂缝的井,选择合适的支撑剂是压裂成功的关键。为了进一步了解保德区块压裂过程中多裂缝形成的情况,对B井和C井进行了压后净压力分析,见图4,图5。
图2 A井X2#煤层压后压降G函数曲线
图3 多裂缝形态示意图
图4 B井净压力分析
图5 C井净压力分析
通过净压力分析得到B井和C井压裂过程中多裂缝的形成趋势:
B井开缝因子:3~5条(48min~98min)
C井开缝因子:5~7条(90min~140min)
开缝因子:指有多少条平行裂缝在争夺同一开启的裂缝空间。
因此,从以上两口井的开缝因子分析,保德区块煤层气井压裂过程中多裂缝产生严重,由于多裂缝的影响,裂缝宽度较小,往往造成压裂加砂过程中砂堵。从这一点出发尝试较小粒径支撑剂,以提高压裂一次成功率。
其他因素对压裂成败影响的分析
通过对压裂煤层数据的统计发现,扩径率是影响保德煤层压裂成败的突出因素,因为出现了支撑剂堵塞的煤层平均扩径率超过20%,而未出现砂堵的煤层平均扩径率不到12%。进一步分析认为:扩径率大,反映煤质较软,压裂时容易产生大量煤粉,堵塞在裂缝前端,影响裂缝的延伸与扩展。
另外,根据压裂工艺因素(如:液量、砂比、排量等)对煤层压裂成败影响的分析,发现:施工排量的大小及其变化也是影响煤层压裂成败的重要因素。2010年,保德区块压裂的核心理念是“低伤害、大排量、大液量”,其施工排量为左右。从统计结果看,排量在以上的,施工成功率约;排量在以下的,施工成功率约,由此证明,适当增加排量可提高成功率。此外,排量的稳定性也是不容忽视的重要因素,因为在压裂过程中出现了支撑剂堵塞的压裂中,施工排量不稳定的占60%,稳定不变的占40%;而在压裂施工过程中未出现支撑剂堵塞的施工中,排量波动较大的占,排量有较小起伏的占25%,稳定不变的占。从这个情况来看,施工排量稳定也有利于减少支撑剂堵塞。
综上所述,影响保德区块煤层压裂施工成败因素如下:
(1)保德区块渗透性较好,导致低粘压裂液滤失大,造缝效率低;
(2)保德区块割理发育,煤层压裂过程中多裂缝产生严重,人工裂缝宽度狭小,“吃”砂能力弱,易产生砂堵;
(3)扩径率大,反映煤岩软,压裂时产生的大量煤粉堵塞在裂缝前端,影响裂缝的扩展与延伸;
(4)排量()偏小,导致活性水有效利用率低,携砂能力差,易引起砂堵;
(5)排量不稳定,尤其是中途停泵,必然导致沉砂,引起支撑剂堵塞。
4 保德区块中低阶煤压裂技术对策
针对上面分析的几个影响保德区块煤层压裂施工成败的因素,通过反复认真的思考,提出了相应的技术对策。
压裂液的优选
2011年采用的活性水作为保德区块煤层压裂的主体压裂液是基本可行的。但是,基于中低阶煤层具有渗透性好、滤失大以及其他方面的需求(例如,利于造缝和携砂,加大砂量,提高前置液百分数和砂比,降低滤失等),可考虑引入低伤害且具有较高携砂能力的TD-1清洁压裂液[3]。根据压裂液评价实验来看,TD-1清洁压裂液对保德区块煤芯的平均伤害率约为,可完全满足保德区块煤层压裂改造的需要。
另外,对于扩径率大的煤层,其煤岩软,压裂时产生的大量煤粉堵塞在裂缝前端,影响裂缝的扩展与延伸。针对这种类型的煤层,可在压裂液中加入煤粉分散剂,使煤粉在压裂液中均匀分布,避免其在裂缝前端聚集。从前期在韩城区块的试验情况来看,使用煤粉分散剂活性水压裂液,可有效降低施工压力,提高施工成功率。
支撑剂的优化组合
考虑到中低阶煤压裂时易形成扭曲的缝宽较窄的多裂缝形态,造成加砂困难,建议2011年保德区块煤层压裂时,加大40/70目中细砂的用量,以保证支撑剂更易被携带到裂缝的深部。同时开展小粒径支撑剂压裂试验,将目前常规的20~40目和16~20目支撑剂均缩小一个粒径等级,即用30~50目替代20~40目支撑剂,以20~40目替代16~20目支撑剂进行施工。从2010年底所做的裂缝内的支撑剂优化组合实验来看,适当降低支撑剂粒径,不会造成裂缝导流能力的明显下降。
提高施工排量,保证排量稳定性
通过排量的提升来降低相对滤失量,提高活性水携砂能力;同时,考虑到设备承受能力及井场实际情况,施工排量从提升至;此外,要求泵车在40MPa的压力下,排量能够稳定在,正常工作2小时以上。
5 现场应用
概况
截止到2011年6月20日,中石油煤层气公司综合应用上述几项压裂技术对策,在保德区块施工29井次,成功率。相比2010年的施工成功率(80%)来说,有了明显提高。从压后产气效果来看,虽然投产井数少(8口)且时间较短(不足70天),但已有4口井见气,2口井见套压,显示了良好的潜力。
应用实例
A井钻井井深750m,煤层埋深610~680m,X1#煤层厚度煤层,含气量。2011年3月,先用102枪127弹射开X1#,X2#煤层,然后以排量注入煤粉分散剂活性水879m3,加石英砂(40/70目8m3,30/50目30m3,20/40目)。压后投产55天,执行连续、稳定、缓慢、长期的排采原则,目前产气量610m3/d,且呈现出良好的上升势头。
6 认识与结论
(1)保德区块煤层渗透性好,压裂液滤失大是影响压裂成败的重要因素;
(2)保德区块割理发育,非均质性强,这些特征改变了煤层气藏地应力分布形态,使压裂时裂缝扩展呈现多裂缝形态;多裂缝的产生严重影响了人工裂缝的宽度,造成支撑剂难以进入人工裂缝,形成砂堵;
(3)优选压裂液体系,优化支撑剂组合,选择合适稳定的排量是解决保德区块煤层压裂成功率低的有效途径。
参考文献
[1]王红霞,戴凤春,钟寿鹤.2003.煤层气井压裂工艺技术研究与应用.油气井测试.12(1):51~52
[2]Economides M J,Nolte K .油藏增产技术(第三版).张保平等译.北京:石油工业出版社
[3]李曙光,李晓明等.2008.新型煤层气藏压裂液研究.2008年煤层气学术研讨会论文集.317~334
萌哒哒的Ashley
孙晗森1贺承祖2
(1.中联煤层气有限责任公司 北京 100011;2.成都理工大学 成都 610059)
作者简介:孙晗森,1973年生,男,浙江义乌入;1998年毕业于成都理工大学石油系,获工学硕士;中联煤层气有限责任公司,高级工程师,从事油气藏数值模拟和增产改造技术研究;地址:北京安外大街甲88号,邮编:100011;E-mail:hssun 。
攻关项目:国家科技部“十五”科技攻关项目部分成果。
摘要 氮气泡沫压裂工艺技术特别适用于低压、低渗和水敏性地层(煤层)的压裂改造。研究表明,泡沫压裂液中作为稳泡剂的高分子聚合物和某些作为起泡剂的表面活性剂均可能损害煤储层,影响压裂效果。本文提出一种新的粘弹性表面活性剂泡沫压裂液。通过室内实验研究及现场应用试验,优选出的氮气泡沫压裂液具有性能好,施工后无需破胶即可排液,对煤层损害小的优点;现场应用后可达到明显的增产效果。
关键词 煤储层 氮气泡沫 压裂液 表面活性剂 现场应用
Study and Experiment on Nitrogen Foam Stimulation Technology for CBM
Sun Hansen,He Chenzhu
( United Coalbed Methane Corp.,Ltd,Beijing 100011; University of Technology,chengdu 610059)
Abstract:Nitrogen foam stimulation technology particularly applies to stimulation operations of coal seams with low pressure,low permeability and water researches indicate that macromolecular polymers as steady agent of bubble and certain surface-active agents as generating agent of bubble in foam fracture liquid may damage coal reservoir and produce negative effects on new type of nitrogen foam fracture liquid called visco-elastic surface-active agent was introduced in this optimized nitrogen foal fracture liquid through indoor study and field application test not only has good physical performance and virtues of low damage to coal seams,but also can produce liquid without glue-broken agent after stimulation application of this type of nitrogen foam fracture liquid in the practical operations of CBM fields showed very obvious stimulation results.
Keywords:coal reservoir;nitrogen foam;fracture liquid;surface-active agent;site application
前言
煤层具有致密、低压、低渗的特点,必须经过压裂之后才能获得有工业价值的产量[1]。压裂液的种类很多,其中以泡沫压裂液因其含液量小,易排,对储层损害小,认为较适合煤层[2,3]。研究表明,泡沫压裂液中作为稳泡剂的高分子聚合物和某些作为起泡剂的表面活性剂均可能损害煤储层,影响压裂效果。
氮气泡沫压裂工艺是20世纪70年代以来发展起来的一项压裂工艺技术。主要适用范围是低压、低渗和强水敏性储集层。在低渗油层压裂改造和煤层气压裂增产中,氮气泡沫压裂工艺在美国应用已经相当普遍,在黑勇士盆地的煤层气开采井中,大多数的施工井都采用氮气泡沫压裂工艺;而国内由于受到压裂设备、技术工艺和成本等方面因素的影响,制约了氮气泡沫压裂工艺的发展。
泡沫压裂液从工艺和添加剂的更新换代上看,主要发展经历了三代。入们将仅用表面活性剂水溶液生的泡沫压裂液叫做第一代泡沫压裂液;将加有聚合物和交联聚合物的泡沫压裂液分别叫做第二和第三代泡沫压裂液[3]。第二和第三代泡沫压裂液虽然比第一代泡沫压裂液的稳定性高,但由于引入聚合物,存在低温井破胶不完全以及破胶后对地层的损害问题[5],部分丧失了泡沫压裂液低损害性的优点。
本文提出一种新的粘弹性表面活性剂泡沫压裂液。通过室内试验及研究,优选出的氮气泡沫压裂液具有性能好,施工后无需破胶即可排液,对煤层损害小的优点。
1 实验条件和方法
试剂及材料
粘弹性表面活性剂:研制产品。氯化钾、过硫酸铵、碳酸盐型阴离子表面活性剂、季铵盐型阳离子表面活性剂、非离子表面活性剂,均为化学试剂。羟丙基瓜胶:工业品。煤样:潘河先导性试验区无烟煤。
实验方法[5,6]
泡沫基液的性质
用毛管粘度计测量粘度,用滴重法测量表面张力,用改进的Bickerman法测量在煤样上的接触角。
泡沫的结构和性质
用高速搅拌法(≥100转/min,2min)起泡。在显微镜下观察泡沫的结构,测量泡沫的体积,计算泡沫质量(气体体积/泡沫体积)。测量液体析出一半的时间,确定泡沫的半衰期。用六速粘度计测量泡沫的流变性。测量砂粒在泡沫中的沉降速度,评价携砂能力。在失水仪测量泡沫的滤失速度。
2 泡沫压裂液性能
氮气泡沫压裂液的结构
研究者[3]根据等球体最紧密堆积时,球体所占空间体积为 这一几何原理,认为泡沫质量≤时泡沫中的气泡为球形,泡沫质量> 时被挤压为五角十二面体。我们的观察表明,该粘弹性表面活性剂水溶液所形成的泡沫,在质量高达 时气泡仍为球形,显微相片如图1所示。仅在泡沫质量大于 时才被挤压为五角十二面体形。由该图可以看出:泡沫中气泡大小分布比较均匀,大多在~之间,由于小气泡可填充在大气泡之间的空隙中,所以这种泡沫在质量远大于时气泡仍可保持球形。
图1 泡沫显微照片
图2 粘弹性表面活性剂溶液中蠕状胶束网络示意图
稳定性
泡沫形成时气液界面增加,气液界面能随之增加。因为高能态均有自发转变为低能态的趋势,所以泡沫属于热力学不稳定体系,只能靠动力学因素维持有限的生存时间。由于气液相密度相差大,液膜中的液体会在重力下流失使液膜变薄,液膜薄到一定程度后易在外力扰动下破裂而使泡沫消失。表面活性剂在气液界面上形成定向吸附层,既可通过降低界面张力使泡沫容易生成,又可靠这种吸附层的粘弹性,使液膜不易破裂,增加泡沫的稳定性[14]。
本文提出的粘弹性表面活性剂溶于水后,可形成类似于聚合物的蠕虫状胶束结构(见图2)[14,15]。这种胶束在较低浓度时,不会明显增加水的粘度(<5mPa·s),但可吸附在气水界面,形成比单独表面活性剂要强得多的吸附层,增加泡沫的稳定性,使氮气泡沫的半衰期均长达1~2h。这种粘弹性表面活性剂形成的泡沫压裂液主要靠增加吸附层的强度,而不是靠增加水的本体粘度来增加泡沫的稳定性,不存在需要破胶以及对储层损害问题,从而比第二代和第三代泡沫压裂液优越。
流变性
实验表明,氮气在该粘弹性表面活性剂水溶液中形成的泡沫压裂液为假塑性流体,氮气n=,K=·s,泡沫压裂液的流变曲线如图3所示。
图3 泡沫压裂液的流变曲线
泡沫流动时气泡之间滑动,气泡还可能变形,需要克服的阻力比基液流动要大,故粘度比基液大。泡沫流动时,随着切力的增加,结构逐渐拆散,阻力减小,表现为剪切稀释性质。泡沫压裂液粘度高,有助于携砂,剪切稀释性有助于减少管输阻力。
携砂能力
压裂液的携砂能力取决于砂粒在其中的沉降速度,文献认为[15],沉降速度小于时最佳,介于~5cm/min 可以接受,大于5cm/min时不可接受。该泡沫压裂液基液的粘度(约为4~5mPa·s)高于清水和活性水压裂液(约为1mPa·s),低于聚合物压裂液(>40mPa·s);实验表明,40目砂粒在该粘弹性表面活性剂泡沫中未见沉降,说明携砂能力良好。
泡沫压裂液良好的携砂能力,宏观而言归因于泡沫高的粘度,微观而言归因于4~10倍于气泡大小的砂粒欲在其中下沉,必需将途中气泡推开和使之变形,而砂粒的重力不足以克服这些阻力,故其沉降速度很小,甚至趋近于零。将30mL(视体积)60 目(粒径)的砂粒放入100mL基液中,在氮气中高速搅拌2min后,将生成的泡沫倾入量筒中静置下来,观察水和砂粒的沉降速度。研究结果表明,在有砂粒存在时泡沫的半衰期缩短约为原来的5/6,并且砂粒的沉降速度约为水沉降速度的80%。前者可能是由于砂粒下沉时的作用力促使液膜破裂;后者说明失水后的泡沫虽然骨架尚在,但已无悬砂能力。这与破胶后水基或油基压裂液的行为有些相似。
降滤失性
压裂液滤失于裂缝壁会引起传递压力损失,故压裂需要降滤失性。压裂液的滤失速度V同时间t有如下关系:
中国煤层气勘探开发利用技术进展:2006年煤层气学术研讨会论文集
式中C称为滤失系数。该泡沫压裂液的 ,与聚合物凝胶压裂液的数值相近。泡沫压裂液滤失时无瞬时失水现象,它是靠高粘度降滤失,而不是靠形成滤饼降滤失。
3 现场应用
在室内研究的基础上,将氮气泡沫压裂技术应用于现场实践。本次现场试验的设计要求是:施工排量控制在 ~;氮气泵注排量达到 600m3/min;氮比大于340m3/m3SPACE;泡沫质量在60%~75%。2005年12月,在潘河先导性试验区完成了2口井的氮气泡沫压裂施工。经过一段时间的排采证实,氮气泡沫压裂施工的 P H1和PH1-006井与周边采用活性水加砂压裂完成的煤层气井比较,主要有以下几点优越性:
(1)加速排液。压裂后返排速度快,产气速度快,氮气泡沫压裂井平均排液完成后开始产气,并可以在井口点火。
(2)氮气泡沫压裂液粘度高,有较好的携砂能力,可以有效控制裂缝形态的发育,降低压裂液在多裂缝发育的煤层中的滤失性。
(3)氮气泡沫压裂施工中,用液量少,对煤层污染较小。
(4)在地质情况基本相同的条件下,通过对周围井的产量对比分析发现,氮气泡沫压裂井的增产效果非常显著。
由上所示,产量与含气量变化图(见图 4、5)可见,PH1 井含气量在 12m3/t,PH1-006井约为16m3/t。通过排采分析发现,氮气泡沫压裂井的产量比周边水力压裂井增加在3倍以上(见图6、7)。
图4 PH1-006井周围井产量与含气量变化图
图5 PH1井周围井产量与含气量变化图
图例说明:★PH1006为氮气泡沫压裂井,其余为活性水加砂压裂井; —产气量(m3/d)
图6 PH1井与周边井的产量对比图
图7 PH1-006井与周边井的产量对比图
4 结论
本文提出的粘弹性表面活性剂溶于水后,可形成类似于聚合物的蠕虫状胶束结构。这种胶束在较低浓度时,不会明显增加水的粘度(<5mPa·s),但可吸附在气水界面,形成比单独表面活性剂要强得多的吸附层,增加泡沫的稳定性,使半衰期长达1~2h。
该泡沫压裂液的切速为170s-1时的表观粘度远大于50mPa·s,压裂液具有良好的悬砂能力。
这种粘弹性表面活性剂形成的泡沫压裂液主要靠增加吸附层的强度,而不是靠增加水的本体粘度来增加泡沫的稳定性,不存在需要破胶以及对储层损害问题,比第二代和第三代泡沫压裂液具有优越性。
通过在煤层气井中的现场应用,氮气泡沫压裂井的增产效果非常显著。通过排采分析发现,氮气泡沫压裂井的产量增加在常规水力压裂井产量的3倍以上。
在国家“十五”攻关项目资助下,开始进行了氮气泡沫压裂技术的研究,并在潘河示范项目中进行了工业试验,实践表明,该项技术具有巨大的推广应用前景。
参考文献
[1]Zebrowitz B stimulation are optimized in Alabama (4):61~72
[2]Blauer D fracturing shows success in gas/oil (31):57~60
[3]Watkins C B New crosslinked foamed fracturing
[4]贺承祖,华明琪.2003.压裂液对储层的损害及其抑制方法.钻井与完井液,20(1):49~53
[5]贺承祖,华明琪.1995.油气藏物理化学.成都:成都电子科技大学出版杜
[6]贺承祖,华明琪.1996.水锁效应研究.钻井与完井液,13(6):13~15
[7]Van Science and pab company
[8]Righmire C methane resource AAPG,32(17):1~13
[9]贺承祖,华明琪.2005.低渗砂岩气藏岩石的孔隙结构与物性特征.新疆石油地质.26(3)280~284
[10]Conway M G R fluid Leakoff and damage mechanism in coalbed methane reservoirs Rock Mountain Resional Meeting/low permeability Reservoirs symposium and Exhibition:245~260
[11]赵庆波等著.1999.煤层气地质与勘探技术.北京:石油工业出版杜
[12]肖进新,赵振国编著.2003.表面活性剂应用原理.北京:化学工业出版杜
[13]Adamson A chemistry of
[14]Magid L surfactant-polyelectrolyte (21):4064~4074
[15]Economides K education services USA
优质工程师考试问答知识库