• 回答数

    9

  • 浏览数

    236

dp73754458
首页 > 工程师考试 > 培训大数据工程师包工作

9个回答 默认排序
  • 默认排序
  • 按时间排序

宝宝的口红

已采纳

如果是正规的培训机构,在培训完都会为学员提供企业双选会、专场招聘会、推荐面试、简历代投等各种帮助学员就业的服务,让学员不要担心就业问题,如需学习大数据,推荐选择【达内教育】。大数据培训完可以就业的岗位如下:1、数据工程,能够从事基于计算机、移动互联网、电子信息、等各种相关领域的【Java大数据】分布式程序开发、大数据集成平台的应用、开发等方面的工作,也可以就在IT领域从事计算机应用工作。2、数据开发,大数据开发岗位是当前人才需求量比较大的岗位之一,当前选择大数据开发岗位会有相对较大的选择空间。大数据开发岗位分为平台研发岗位和行业场景开发岗位两大类,通常大数据平台研发岗位对于从业者的要求相对比较高,属于研发级岗位,而大数据行业应用场景开发则相对要容易一些。3、框架开发,主要开发分布式计算、存储框架,这个岗位主要在大公司有应用,尤其是云计算业务,中小企业基本上应用云服务或者开源的框架。感兴趣的话点击此处,免费学习一下想了解更多有关大数据的相关信息,推荐咨询【达内教育】。达内与阿里、Adobe、红帽、ORACLE、微软、美国计算机行业协会(CompTIA)、百度等国际知名厂商建立了项目合作关系。共同制定行业培训标准,为达内学员提供高端技术、所学课程受国际厂商认可,让达内学员更具国际化就业竞争力。达内IT培训机构,试听名额限时抢购。

培训大数据工程师包工作

177 评论(10)

且吃且增重

大数据分析师,大数据挖掘师/算法工程师,大数据工程师,大数据运维工程师,大数据仓库工程师,大数据产品经理,大数据架构师/资深大数据架构师等等这些都是可以的。

317 评论(15)

飞天舞88

如果你是合格的大数据开发技术人员,那当然有高薪的工作,并不是说你学完了之后就一定有高薪工作的,那需要看你学习怎么样。目前大数据培训相对其他培训项目要好就业,因为其他语言还是技能培训都是有一定的市场基础的,而大数据在最近两年才大力发展,并且在各领域蔓延,因此所产生的人才缺口巨大,而在企业中真正对大数据技能比较强力的技术人才,又特别的少;应用越来越广,技术人才却产生较慢,刚培训的人员,只能适应基本的软件操作和理论基础;还达不到企业要完成复杂业务的技术需求;所以培训入门快,拿薪资快,但只是一时,进入企业,不努力学习是跟不上发展与用人需求的。

160 评论(11)

眼角落下的泪

1. Hadoop大数据开发方向 对应岗位:大数据开发工程师、大数据架构师、爬虫工程师 等2. 数据挖掘、数据分析&机器学习方向 对应岗位:数据科学家、数据挖掘工程师、大数据分析工程师、大数据咨询顾问、机器学习工程师等3.大数据运维&云计算方向 对应岗位:大数据运维工程师

243 评论(9)

猫与老虎

1、数据采集:业务系统的埋点代码时刻会产生一些分散的原始日志,可以用Flume监控接收这些分散的日志,实现分散日志的聚合,即采集。2、数据清洗:一些字段可能会有异常取值,即脏数据。为了保证数据下游的"数据分析统计"能拿到比较高质量的数据,需要对这些记录进行过滤或者字段数据回填。一些日志的字段信息可能是多余的,下游不需要使用到这些字段做分析,同时也为了节省存储开销,需要删除这些多余的字段信息。一些日志的字段信息可能包含用户敏感信息,需要做脱敏处理。如用户姓名只保留姓,名字用'*'字符替换。3、数据存储:清洗后的数据可以落地入到数据仓库(Hive),供下游做离线分析。如果下游的"数据分析统计"对实时性要求比较高,则可以把日志记录入到kafka。4、数据分析统计:数据分析是数据流的下游,消费来自上游的数据。其实就是从日志记录里头统计出各种各样的报表数据,简单的报表统计可以用sql在kylin或者hive统计,复杂的报表就需要在代码层面用Spark、Storm做统计分析。一些公司好像会有个叫BI的岗位是专门做这一块的。5、数据可视化:用数据表格、数据图等直观的形式展示上游"数据分析统计"的数据。一般公司的某些决策会参考这些图表里头的数据

119 评论(14)

纯洁的毛灾灾

大数据岗位高薪清单对于求职者来说,大数据只是所从事事业的一个方向,而职业岗位则是决定做什么事?大数据从业者/求职者可以根据自身所学技术及兴趣特征,选择一个适合自己的大数据相关岗位。下面为大家介绍十种与大数据相关的热门岗位。1 ETL研发企业数据种类与来源的不断增加,对数据进行整合与处理变得越来越困难,企业迫切需要一种有数据整合能力的人才。ETL开发者这是在此需求基础下而诞生的一个职业岗位。ETL人才在大数据时代炙手可热的原因之一是:在企业大数据应用的早期阶段,Hadoop只是穷人的ETL2 Hadoop开发随着数据规模不断增大,传统BI的数据处理成本过高企业负担加重。而Hadoop廉价的数据处理能力被重新挖掘,企业需求持续增长。并成为大数据人才必须掌握的一种技术。3 可视化工具开发可视化开发就是在可视化工具提供的图形用户界面上,通过操作界面元素,有可视化开发工具自动生成相关应用软件,轻松跨越多个资源和层次连接所有数据。过去,数据可视化属于商业智能开发者类别,但是随着Hadoop的崛起,数据可视化已经成了一项独立的专业技能和岗位。4 信息架构开发大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。5 数据仓库研究为方便企业决策,出于分析性报告和决策支持的目的而创建的数据仓库研究岗位是一种所有类型数据的战略集合。为企业提供业务智能服务,指导业务流程改进和监视时间、成本、质量和控制。6 OLAP开发OLAP在线联机分析开发者,负责将数据从关系型或非关系型数据源中抽取出来建立模型,然后创建数据访问的用户界面,提供高性能的预定义查询功能。7 数据科学研究数据科学家是一个全新的工种,能够将企业的数据和技术转化为企业的商业价值。随着数据学的进展,越来越多的实际工作将会直接针对数据进行,这将使人类认识数据,从而认识自然和行为。8 数据预测分析营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。8 数据预测分析营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。9 企业数据管理企业要提高数据质量必须考虑进行数据管理,并需要为此设立数据管家职位,这一职位的人员需要能够利用各种技术工具汇集企业周围的大量数据,并将数据清洗和规范化,将数据导入数据仓库中,成为一个可用的版本。10 数据安全研究数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。

88 评论(8)

爱吃烤鸭的小猫

1、数据采集:

业务系统的埋点代码时刻会产生一些分散的原始日志,可以用Flume监控接收这些分散的日志,实现分散日志的聚合,即采集。

2、数据清洗:

一些字段可能会有异常取值,即脏数据。为了保证数据下游的"数据分析统计"能拿到比较高质量的数据,需要对这些记录进行过滤或者字段数据回填。

一些日志的字段信息可能是多余的,下游不需要使用到这些字段做分析,同时也为了节省存储开销,需要删除这些多余的字段信息。

一些日志的字段信息可能包含用户敏感信息,需要做脱敏处理。如用户姓名只保留姓,名字用'*'字符替换。

3、数据存储:

清洗后的数据可以落地入到数据仓库(Hive),供下游做离线分析。如果下游的"数据分析统计"对实时性要求比较高,则可以把日志记录入到kafka。

4、数据分析统计:

数据分析是数据流的下游,消费来自上游的数据。其实就是从日志记录里头统计出各种各样的报表数据,简单的报表统计可以用sql在kylin或者hive统计,复杂的报表就需要在代码层面用Spark、Storm做统计分析。一些公司好像会有个叫BI的岗位是专门做这一块的。

5、数据可视化:

用数据表格、数据图等直观的形式展示上游"数据分析统计"的数据。一般公司的某些决策会参考这些图表里头的数据。

302 评论(10)

贪吃的懒妞

营销分析师。客户关系管理分析师。数据可视化。软件研发工程师。大数据工程师。数据架构师。数据可视化,软件研发工程师,大数据工程师,数据分析师,数据架构师,数据挖据工程师,数据算法工程师,数据产品经理

120 评论(8)

库尔尼郭娃

不包就业,但可以企业内推。

288 评论(15)

相关问答