养啥啥不活
数据挖掘工程师可以通过学习考取两个证书,证书目前主流有两个,一个是CDA,另一个是CPDA。全名是数据分析师,主要是数据分析方法、技术和软件操作为主。它包括:1、统计概率基础;2、数据分析模型方法;3、软件、工具的运用。如果这些技术不会,也不可能会操作数据分析。所以,CDA主要是针对数据分析师必不可少的技术性培训,是数据的获取、储存、整理、清洗、分析,检验到结果报告一个整体的过程,以及数据分析部分软件的操作。全名叫项目数据分析师,国内出现最早的数据分析培训,原先是信息产业部在组织,目前由中商联数据分析专业委员会和工信部教育与考试中心主管,内容主要针对的是基于企业在投资、经营、管理领域的数据分析,类似于MBA课程。课程包括《数据分析基础》、《战略管理》、《量化投资》、《量化经营》等,覆盖企业运营的每个环节,以数据分析的方法来进行的管理、经营、投资的分析,应该说企业的管理层适合学习CPDA来进行管理层面的分析和指导。关于数据挖掘工程师的课程推荐CDA数据分析师的相关课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”点击预约免费试听课。
Joy9999999
【导读】众所周知,随着社会的发展,数据分析师成为了炙手可热的热门执业,一方面是其高薪待遇另一方面就是其未来广阔的发展前景。那么对于想入行的求职者们,如何准备数据分析师面试?需要具备哪些能力呢?小编认为需要具备以下几项能力,一起来看看吧!希望对大家有所帮助。
1. 理论知识(概率统计、概率分析等)
掌握与数据分析相关的算法是算法工程师必备的能力,如果你面试的是和算法相关的工作,那么面试官一定会问你和算法相关的问题。比如常用的数据挖掘算法都有哪些,EM 算法和 K-Means 算法的区别和相同之处有哪些等。
有些分析师的工作还需要有一定的数学基础,比如概率论与数理统计,最优化原理等。这些知识在算法优化中会用到。
除此以外,一些数据工程师的工作更偏向于前期的数据预处理,比如 ETL 工程师。这个职位考察你对数据清洗、数据集成的能力。虽然它们不是数据分析的“炼金”环节,却在数据分析过程中占了 80% 的时间。
2. 具体工具(sklearn、Python、Numpy、Pandas 等)
工程师一定需要掌握工具,你通常可以从 JD 中了解一家公司采用的工具有哪些。如果你做的是和算法相关的工作,最好还是掌握一门语言,Python 语言最适合不过,还需要对 Python 的工具,比如 Numpy、Pandas、sklearn 有一定的了解。
数据 ETL 工程师还需要掌握 ETL 工具,比如 Kettle。
如果是数据可视化工作,需要掌握数据可视化工具,比如 Python 可视化,Tableau 等。
如果工作和数据采集相关,你也需要掌握数据采集工具,比如 Python 爬虫、八爪鱼。
3. 业务能力(数据思维)
数据分析的本质是要对业务有帮助。因此数据分析有一个很重要的知识点就是用户画像。
用户画像是企业业务中用到比较多的场景,对于数据分析来说,就是对数据进行标签化,实际上这是一种抽象能力。
以上就是小编今天给大家整理发送的关于“如何准备数据分析师面试?需要具备哪些能力?”的相关内容,希望对大家有所帮助。想了解更多关于数据分析及人工智能就业岗位分析,关注小编持续更新。
april841002
数据挖掘领域是一个独特的行业,通常的招聘面试方法可能不大适用于本行业的特点。在招聘一个合格的数据挖掘工程师时,公司一般关注以下三个方面:他聪明吗?聪明意味着能透过复杂的信息建构问题并以正确的方式加以解决。聪明人还能从失败中获取经验。他能否专注于项目?专注意味着在各种困难的环境内,仍能独立或合作完成项目。他是否能与团队一起工作。团队合作需要很好的沟通能力,工作中涉及到的概念、问题、模型、结论等都需要成员之间正确的沟通方能加以明确。为了解候选人是否具有数据挖掘工程师的潜质,需要一小时的面试,主要通过以下五个环节:1、简介如同交谈之初的寒暄一样,简介是使候选人放松下来。可以先介绍一下公司本身的情况,再回答对方的一些疑问。如果问题很复杂,可以将回答放到面试的最后阶段再处理。2、关于数据挖掘项目这是最为重要且耗时的面试阶段,询问候选人最近接手的数据挖掘项目的情况和处理方式。要提问的方面包括:他一开始是如何描述这个项目的项目持续了多长时间这个项目的关键问题是什么问题是如何得到解决的在数据挖掘项目中最为困难的阶段是什么最有趣的阶段又是什么在他眼里,客户是怎么样的团队的其他成员又是如何表现的从中获得了什么样的经验在这个面试阶段,不仅要提问关于“what”的问题,还要很多关于“why”的问题。因为优秀的数据挖掘工程师要能面对客户,清晰的论证并支持其提出的观点。3、关于数据挖掘的流程考察候选人对于工作流程的认识是必要的,如果他谈到了跨行业数据挖掘流程规范(CRISP-DM)意味着好兆头。有很多时候,候选人对这些规范不以为然。虽然说从不同的角度来看待问题是一种创新,但是创新也需要建立在坚实在流程标准之上。因为它可以保证我们不会出现大的纰漏。必要的时候,可以用白板让候选人画出流程图。并让他评价这些工作中最为重要或需要反思的地方。因为建模工作不可能一次完成,反复的提炼问题、建立模型的情况是经常遇到的。另外可以在某个挖掘流程进行深入考查,例如询问对方如何避免过度拟合,如何从大量的候选变量中进行筛选,如何评价或比较模型的效果。4、解决问题软件公司的面试一般会包括“编码测试”,考查数据挖掘工程师也应该如此。一种可以参考的作法是提供一份存在缺陷的分析报告。让候选人对报告进行研究,表达报告中结论的意义,提出其中所存在的问题或不足,提出改进或补救的方法。5、收尾在面试的最后阶段,需要回答候选人的其它提问,并使之相信本公司在本行业中的优势地位,以及在职业生涯中的作用。在完成面试后,需要立即将面试记录进行整理存档。面试是一件苦差事,但也是一个交流学习的机会。通过面试可以了解到其它人遇到的问题,以及他们是如何解决的。
zeeleemoon
数据挖掘领域是一个独特的行业,通常的招聘面试方法可能不大适用于本行业的特点。在招聘一个合格的数据挖掘工程师时,公司一般关注以下三个方面:
他聪明吗?聪明意味着能透过复杂的信息建构问题并以正确的方式加以解决。聪明人还能从失败中获取经验。
他能否专注于项目?专注意味着在各种困难的环境内,仍能独立或合作完成项目。
他是否能与团队一起工作。团队合作需要很好的沟通能力,工作中涉及到的概念、问题、模型、结论等都需要成员之间正确的沟通方能加以明确。
为了解候选人是否具有数据挖掘工程师的潜质,需要一小时的面试,主要通过以下五个环节:
1、简介
如同交谈之初的寒暄一样,简介是使候选人放松下来。可以先介绍一下公司本身的情况,再回答对方的一些疑问。如果问题很复杂,可以将回答放到面试的最后阶段再处理。
2、关于数据挖掘项目
这是最为重要且耗时的面试阶段,询问候选人最近接手的数据挖掘项目的情况和处理方式。要提问的方面包括:
他一开始是如何描述这个项目的
项目持续了多长时间
这个项目的关键问题是什么
问题是如何得到解决的
在数据挖掘项目中最为困难的阶段是什么
最有趣的阶段又是什么
在他眼里,客户是怎么样的
团队的其他成员又是如何表现的
从中获得了什么样的经验
在这个面试阶段,不仅要提问关于“what”的问题,还要很多关于“why”的问题。因为优秀的数据挖掘工程师要能面对客户,清晰的论证并支持其提出的观点。
3、关于数据挖掘的流程
考察候选人对于工作流程的认识是必要的,如果他谈到了跨行业数据挖掘流程规范(CRISP-DM)意味着好兆头。有很多时候,候选人对这些规范不以为然。虽然说从不同的角度来看待问题是一种创新,但是创新也需要建立在坚实在流程标准之上。因为它可以保证我们不会出现大的纰漏。
必要的时候,可以用白板让候选人画出流程图。并让他评价这些工作中最为重要或需要反思的地方。因为建模工作不可能一次完成,反复的提炼问题、建立模型的情况是经常遇到的。
另外可以在某个挖掘流程进行深入考查,例如询问对方如何避免过度拟合,如何从大量的候选变量中进行筛选,如何评价或比较模型的效果。
4、解决问题
软件公司的面试一般会包括“编码测试”,考查数据挖掘工程师也应该如此。一种可以参考的作法是提供一份存在缺陷的分析报告。让候选人对报告进行研究,表达报告中结论的意义,提出其中所存在的问题或不足,提出改进或补救的方法。
5、收尾
在面试的最后阶段,需要回答候选人的其它提问,并使之相信本公司在本行业中的优势地位,以及在职业生涯中的作用。在完成面试后,需要立即将面试记录进行整理存档。
优质工程师考试问答知识库