可爱多O
如果只是单纯做算法、数据挖掘的话,就永远只是服务于数据,一辈子跟着需求走,对我而言,没有什么前途,我还是想站在公司和市场的最前端,推着公司走。而且简单说来,大家都知道程序员这个职位,年龄会成为发展瓶颈,到了一定年纪或者做到管理层,或者直接转行,很少有人愿意过着一辈子写代码领工资的人生。其实,不论是人、是事还是物,核心竞争力都是你能产出什么价值。学数据挖掘、自然语言这些知识相对来说含金量比较高,门槛也高,不是谁都能做,对于价值变现来说,可能速度会更快。但要想切切实实体会到成就感所带来的快乐,就一定得自己锁定一个目标,不再跟着别人的需求兜兜转转。拒绝被那些提出各种要求的声音转移注意力,这一点是我当程序员带不来的。我认为人生最重要的事还是学习如何创造自己的价值,时间会推动着你选择不同的道路,我很幸运,能够将自己擅长的东西应用到别的领域,把自己的价值发挥到极致。
李晓诗125
1.算法工程师要求很高的数学水平和逻辑思维。其实语言是次要的,语言只是表达的方式而已。2 你想成为算法工程师还需要一定的英文水准,因为看中文书你完全体会不到原滋味。3 不要太拘泥于教材。
馋猫儿星星
一、算法工程师简介(通常是月薪15k以上,年薪18万以上,只是一个概数,具体薪资可以到招聘网站如拉钩,猎聘网上看看)算法工程师目前是一个高端也是相对紧缺的职位;算法工程师包括音/视频算法工程师(通常统称为语音/视频/图形开发工程师)、图像处理算法工程师、计算机视觉算法工程师、通信基带算法工程师、信号算法工程师、射频/通信算法工程师、自然语言算法工程师、数据挖掘算法工程师、搜索算法工程师、控制算法工程师(云台算法工程师,飞控算法工程师,机器人控制算法)、导航算法工程师(@之介感谢补充)、其他【其他一切需要复杂算法的行业】专业要求:计算机、电子、通信、数学等相关专业;学历要求:本科及其以上的学历,大多数是硕士学历及其以上;语言要求:英语要求是熟练,基本上能阅读国外专业书刊,做这一行经常要读论文;必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。算法工程师的技能树(不同方向差异较大,此处仅供参考)1 机器学习2 大数据处理:熟悉至少一个分布式计算框架Hadoop/Spark/Storm/ map-reduce/MPI3 数据挖掘4 扎实的数学功底5 至少熟悉C/C++或者Java,熟悉至少一门编程语言例如java/python/R加分项:具有较为丰富的项目实践经验(不是水论文的哪种)二、算法工程师大致分类与技术要求(一)图像算法/计算机视觉工程师类包括图像算法工程师,图像处理工程师,音/视频处理算法工程师,计算机视觉工程师要求l 专业:计算机、数学、统计学相关专业;l 技术领域:机器学习,模式识别l 技术要求:(1) 精通DirectX HLSL和OpenGL GLSL等shader语言,熟悉常见图像处理算法GPU实现及优化;(2) 语言:精通C/C++;(3) 工具:Matlab数学软件,CUDA运算平台,VTK图像图形开源软件【医学领域:ITK,医学图像处理软件包】(4) 熟悉OpenCV/OpenGL/Caffe等常用开源库;(5) 有人脸识别,行人检测,视频分析,三维建模,动态跟踪,车识别,目标检测跟踪识别经历的人优先考虑;(6) 熟悉基于GPU的算法设计与优化和并行优化经验者优先;(7) 【音/视频领域】熟悉等视频编解码标准和FFMPEG,熟悉rtmp等流媒体传输协议,熟悉视频和音频解码算法,研究各种多媒体文件格式,GPU加速;应用领域:(1) 互联网:如美颜app(2) 医学领域:如临床医学图像(3) 汽车领域(4) 人工智能相关术语:(1) OCR:OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程(2) Matlab:商业数学软件;(3) CUDA: (Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台(由ISA和GPU构成)。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题(4) OpenCL: OpenCL是一个为异构平台编写程序的框架,此异构平台可由CPU,GPU或其他类型的处理器组成。(5) OpenCV:开源计算机视觉库;OpenGL:开源图形库;Caffe:是一个清晰,可读性高,快速的深度学习框架。(6) CNN:(深度学习)卷积神经网络(Convolutional Neural Network)CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。(7) 开源库:指的是计算机行业中对所有人开发的代码库,所有人均可以使用并改进代码算法。(二)机器学习工程师包括机器学习工程师要求l 专业:计算机、数学、统计学相关专业;l 技术领域:人工智能,机器学习l 技术要求:(1) 熟悉Hadoop/Hive以及Map-Reduce计算模式,熟悉Spark、Shark等尤佳;(2) 大数据挖掘;(3) 高性能、高并发的机器学习、数据挖掘方法及架构的研发;应用领域:(1)人工智能,比如各类仿真、拟人应用,如机器人(2)医疗用于各类拟合预测(3)金融高频交易(4)互联网数据挖掘、关联推荐(5)无人汽车,无人机相关术语:(1) Map-Reduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。(三)自然语言处理工程师包括自然语言处理工程师要求l 专业:计算机相关专业;l 技术领域:文本数据库l 技术要求:(1) 熟悉中文分词标注、文本分类、语言模型、实体识别、知识图谱抽取和推理、问答系统设计、深度问答等NLP 相关算法;(2) 应用NLP、机器学习等技术解决海量UGC的文本相关性;(3) 分词、词性分析、实体识别、新词发现、语义关联等NLP基础性研究与开发;(4) 人工智能,分布式处理Hadoop;(5) 数据结构和算法;应用领域:口语输入、书面语输入、语言分析和理解、语言生成、口语输出技术、话语分析与对话、文献自动处理、多语问题的计算机处理、多模态的计算机处理、信息传输与信息存储 、自然语言处理中的数学方法、语言资源、自然语言处理系统的评测。相关术语:(2) NLP:人工智能的自然语言处理,NLP (Natural Language Processing) 是人工智能(AI)的一个子领域。NLP涉及领域很多,最令我感兴趣的是“中文自动分词”(Chinese word segmentation):结婚的和尚未结婚的【计算机中却有可能理解为结婚的“和尚“】(四)射频/通信/信号算法工程师类包括3G/4G无线通信算法工程师, 通信基带算法工程师,DSP开发工程师(数字信号处理),射频通信工程师,信号算法工程师要求l 专业:计算机、通信相关专业;l 技术领域:2G、3G、4G,BlueTooth(蓝牙),WLAN,无线移动通信, 网络通信基带信号处理l 技术要求:(1) 了解2G,3G,4G,BlueTooth,WLAN等无线通信相关知识,熟悉现有的通信系统和标准协议,熟悉常用的无线测试设备;(2) 信号处理技术,通信算法;(3) 熟悉同步、均衡、信道译码等算法的基本原理;(4) 【射频部分】熟悉射频前端芯片,扎实的射频微波理论和测试经验,熟练使用射频电路仿真工具(如ADS或MW或Ansoft);熟练使用cadence、altium designer PCB电路设计软件;(5) 有扎实的数学基础,如复变函数、随机过程、数值计算、矩阵论、离散数学应用领域:通信VR【用于快速传输视频图像,例如乐客灵境VR公司招募的通信工程师(数据编码、流数据)】物联网,车联网导航,军事,卫星,雷达相关术语:(1) 基带信号:指的是没有经过调制(进行频谱搬移和变换)的原始电信号。(2) 基带通信(又称基带传输):指传输基带信号。进行基带传输的系统称为基带传输系统。传输介质的整个信道被一个基带信号占用.基带传输不需要调制解调器,设备化费小,具有速率高和误码率低等优点,.适合短距离的数据传输,传输距离在100米内,在音频市话、计算机网络通信中被广泛采用。如从计算机到监视器、打印机等外设的信号就是基带传输的。大多数的局域网使用基带传输,如以太网、令牌环网。(3) 射频:射频(RF)是Radio Frequency的缩写,表示可以辐射到空间的电磁频率(电磁波),频率范围从300KHz~300GHz之间(因为其较高的频率使其具有远距离传输能力)。射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。【有线电视就是用射频传输方式】(4) DSP:数字信号处理,也指数字信号处理芯片(五)数据挖掘算法工程师类包括推荐算法工程师,数据挖掘算法工程师要求l 专业:计算机、通信、应用数学、金融数学、模式识别、人工智能;l 技术领域:机器学习,数据挖掘l 技术要求:(1) 熟悉常用机器学习和数据挖掘算法,包括但不限于决策树、Kmeans、SVM、线性回归、逻辑回归以及神经网络等算法;(2) 熟练使用SQL、Matlab、Python等工具优先;(3) 对Hadoop、Spark、Storm等大规模数据存储与运算平台有实践经验【均为分布式计算框架】(4) 数学基础要好,如高数,统计学,数据结构l 加分项:数据挖掘建模大赛;应用领域(1) 个性化推荐(2) 广告投放(3) 大数据分析相关术语Map-Reduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。(六)搜索算法工程师要求l 技术领域:自然语言l 技术要求:(1) 数据结构,海量数据处理、高性能计算、大规模分布式系统开发(2) hadoop、lucene(3) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验(4) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验;(5) 精通倒排索引、全文检索、分词、排序等相关技术;(6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架;(7) 优秀的数据库设计和优化能力,精通MySQL数据库应用 ;(8) 了解推荐引擎和数据挖掘和机器学习的理论知识,有大型搜索应用的开发经验者优先。(七)控制算法工程师类包括了云台控制算法,飞控控制算法,机器人控制算法要求l 专业:计算机,电子信息工程,航天航空,自动化l 技术要求:(1) 精通自动控制原理(如PID)、现代控制理论,精通组合导航原理,姿态融合算法,电机驱动,电机驱动(2) 卡尔曼滤波,熟悉状态空间分析法对控制系统进行数学模型建模、分析调试;l 加分项:有电子设计大赛,机器人比赛,robocon等比赛经验,有硬件设计的基础;应用领域(1)医疗/工业机械设备(2)工业机器人(3)机器人(4)无人机飞控、云台控制等(八)导航算法工程师要求l 专业:计算机,电子信息工程,航天航空,自动化l 技术要求(以公司职位JD为例)公司一(1)精通惯性导航、激光导航、雷达导航等工作原理;(2)精通组合导航算法设计、精通卡尔曼滤波算法、精通路径规划算法;(3)具备导航方案设计和实现的工程经验;(4)熟悉C/C++语言、熟悉至少一种嵌入式系统开发、熟悉Matlab工具;公司二(1)熟悉基于视觉信息的SLAM、定位、导航算法,有1年以上相关的科研或项目经历;(2)熟悉惯性导航算法,熟悉IMU与视觉信息的融合;应用领域无人机、机器人等。
绿草泱泱
算法工程师前景还是比较广阔的。算法(Algorithm)是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。算法工程师就是利用算法处理事物的人。
何时何处
算法工程师是利用算法来处理事物的人,根据研究领域,主要包括软件开发和软件开发方面的知识和知识,它主要包括对软件开发的知识/视频专业进行加工的工程师,软件开发的工程师和软件开发的工程师需要有丰富的经验。
研发工程师是从事某一行业的专业人员,系统地研究和开发一些不存在的东西,并且有一定的经验,或者改进已经存在的东西以达到最广泛的工作目标的程序员,它需要强烈的好奇心,喜欢新的东西,有趣的学习。
软件工程师是从事软件专业的人的专业能力的认证,它表明他具有从事工程开发的系列的相关工程师的集体资格。
扩展资料:
算法工程师根据研究领域来分主要有音频/视频算法处理、图像技术方面的二维信息算法处理和通信物理层、雷达信号处理、生物医学信号处理等领域的一维信息算法处理。
研发工程师创新意识:
思路开阔,能从市场、用户和生产工艺角度考虑产品开发。唯技术至上的人,思路狭隘,即使聪明过人,只能扮演一个处理具体问题的小角色。企业的唯一目标是赚钱,能赚钱就是好产品,不能赚钱就等于零。
对于软件工程师,不太重视学历,但并不是对学历没有要求,重点关注项目的经验和学习知识的能力,能否利用软件工程专业知识来解决问题,根据岗位不同,对软件工程师的要求也有所不同。
参考资料来源:百度百科-算法工程师
参考资料来源:百度百科-研发工程师
参考资料来源:百度百科-软件工程师
优质工程师考试问答知识库