• 回答数

    8

  • 浏览数

    271

玥玥285966231
首页 > 工程师考试 > 大数据安全工程师培训课程

8个回答 默认排序
  • 默认排序
  • 按时间排序

素雪清芳

已采纳

大数据工程师要学什么课程?没接触过大数据的人也许不知道大数据工程师是什么,更别说知道大数据工程师要学什么课程了。我们先来说下大数据工程师是做什么的吧。是负责公司互联网数据分析的一个职位,对数据库进行开发和(或)维护,需要具备超强的逻辑思维,精通各种语言,需要有相当好的毅力和耐心。光环大数据的大数据培训课程分为如下几个阶段:第一阶段:java核心学习学习内容:Java核心内容学习目标:掌握数据类型与运算符,数组、类与对象;掌握IO流与反射、多线程、JDBC。完成目标:Java多线程模拟多窗口售票,Java集合框架管理。第二阶段: JavaEE课程大纲学习内容:JavaEE核心内容学习目标:Mysql数据基础知识,Jdbc 基础概念和操作掌握HTML和CSS语法、Java核心语法完成目标:京东电商网站项目、2048小游戏。第三阶段:Linux精讲学习内容:Linux命令、文件、配置,Shell、Awk、Sed学习目标:搭建负载均衡、高可靠的服务器集群,可大网站并发访问量,保证服务不间断完成目标:Linux环境搭建、shell脚本小游戏 贪吃蛇。第四阶段:Hadoop生态体系学习内容:HDFS、MapReduce、Hive、Sqoop、Oozie学习目标:掌握HDFS原理、操作和应用开发,掌握分布式运算、Hive数据仓库原理及应用。完成目标:微博数据大数据分析、汽车销售大数据分析第五阶段:Storm实时开发学习内容:Zookeeper、HBase、Storm实时数据学习目标:掌握Storm程序的开发及底层原理,具备开发基于Storm的实时计算程序的能力。完成目标:实时处理新数据和更新数据库,处理密集查询并行搜索处理大集合的数据。

大数据安全工程师培训课程

119 评论(13)

guyanni1987

Java入门、Java进阶、数据库编程、web应用实战、经典&主流框架、互联网流行技术、互联网解决方案

245 评论(11)

正在缓冲1234

大数据开发工程师要学习的课程很多,需要知识面很广。基础包括:第一:JavaSE,大数据的基础之一,不会点Java去搞大数据就是去澡堂不搓背。第二:Python,SQL(主要是查,查询一定要精),Scala(会基础语法就行)第三:Linux+shell,也可以了解一些网络基础知识第四:数据分析+统计学(用Python去做做简单的数据分析,看看自己有没有对数据的敏感度。同时掌握一些这方面的知识对以后也有好处。)软件类:第一梯队:Hadoop,spark,flink,kafka,zookeeper第二梯队:hbase,hive,Phoenix,kylin,ClickHouse第三梯队:数据迁移工具,文本搜索引擎,数仓建模,数据湖

182 评论(13)

我爱我家2小宝

Sqoop:(发音:skup)作为一款开源的离线数据传输工具,主要用于Hadoop(Hive) 与传统数据库(MySql,PostgreSQL)间的数据传递。它可以将一个关系数据库中数据导入Hadoop的HDFS中,也可以将HDFS中的数据导入关系型数据库中。

Flume:实时数据采集的一个开源框架,它是Cloudera提供的一个高可用用的、高可靠、分布式的海量日志采集、聚合和传输的系统。目前已经是Apache的顶级子项目。使用Flume可以收集诸如日志、时间等数据并将这些数据集中存储起来供下游使用(尤其是数据流框架,例如Storm)。和Flume类似的另一个框架是Scribe(FaceBook开源的日志收集系统,它为日志的分布式收集、统一处理提供一个可扩展的、高容错的简单方案)大数据分析培训课程内容有哪些

Kafka:通常来说Flume采集数据的速度和下游处理的速度通常不同步,因此实时平台架构都会用一个消息中间件来缓冲,而这方面最为流行和应用最为广泛的无疑是Kafka。它是由LinkedIn开发的一个分布式消息系统,以其可以水平扩展和高吞吐率而被广泛使用。目前主流的开源分布式处理系统(如Storm和Spark等)都支持与Kafka 集成。

Kafka是一个基于分布式的消息发布-订阅系统,特点是速度快、可扩展且持久。与其他消息发布-订阅系统类似,Kafka可在主题中保存消息的信息。生产者向主题写入数据,消费者从主题中读取数据。浅析大数据分析技术

作为一个分布式的、分区的、低延迟的、冗余的日志提交服务。和Kafka类似消息中间件开源产品还包括RabbiMQ、ActiveMQ、ZeroMQ等。

MapReduce:MapReduce是Google公司的核心计算模型,它将运行于大规模集群上的复杂并行计算过程高度抽象为两个函数:map和reduce。MapReduce最伟大之处在于其将处理大数据的能力赋予了普通开发人员,以至于普通开发人员即使不会任何的分布式编程知识,也能将自己的程序运行在分布式系统上处理海量数据。

Hive:MapReduce将处理大数据的能力赋予了普通开发人员,而Hive进一步将处理和分析大数据的能力赋予了实际的数据使用人员(数据开发工程师、数据分析师、算法工程师、和业务分析人员)。大数据分析培训课程大纲

Hive是由Facebook开发并贡献给Hadoop开源社区的,是一个建立在Hadoop体系结构上的一层SQL抽象。Hive提供了一些对Hadoop文件中数据集进行处理、查询、分析的工具。它支持类似于传统RDBMS的SQL语言的查询语言,一帮助那些熟悉SQL的用户处理和查询Hodoop在的数据,该查询语言称为Hive SQL。Hive SQL实际上先被SQL解析器解析,然后被Hive框架解析成一个MapReduce可执行计划,并按照该计划生产MapReduce任务后交给Hadoop集群处理。

Spark:尽管MapReduce和Hive能完成海量数据的大多数批处理工作,并且在打数据时代称为企业大数据处理的首选技术,但是其数据查询的延迟一直被诟病,而且也非常不适合迭代计算和DAG(有限无环图)计算。由于Spark具有可伸缩、基于内存计算能特点,且可以直接读写Hadoop上任何格式的数据,较好地满足了数据即时查询和迭代分析的需求,因此变得越来越流行。

Spark是UC Berkeley AMP Lab(加州大学伯克利分校的 AMP实验室)所开源的类Hadoop MapReduce的通用并行框架,它拥有Hadoop MapReduce所具有的优点,但不同MapReduce的是,Job中间输出结果可以保存在内存中,从而不需要再读写HDFS ,因此能更好适用于数据挖掘和机器学习等需要迭代的MapReduce算法。

Spark也提供类Live的SQL接口,即Spark SQL,来方便数据人员处理和分析数据。

Spark还有用于处理实时数据的流计算框架Spark Streaming,其基本原理是将实时流数据分成小的时间片段(秒或几百毫秒),以类似Spark离线批处理的方式来处理这小部分数据。

Storm:MapReduce、Hive和Spark是离线和准实时数据处理的主要工具,而Storm是实时处理数据的。

Storm是Twitter开源的一个类似于Hadoop的实时数据处理框架。Storm对于实时计算的意义相当于Hadoop对于批处理的意义。Hadoop提供了Map和Reduce原语,使对数据进行批处理变得非常简单和优美。同样,Storm也对数据的实时计算提供了简单的Spout和Bolt原语。Storm集群表面上和Hadoop集群非常像,但是在Hadoop上面运行的是MapReduce的Job,而在Storm上面运行的是Topology(拓扑)。

Storm拓扑任务和Hadoop MapReduce任务一个非常关键的区别在于:1个MapReduce Job最终会结束,而一个Topology永远运行(除非显示的杀掉它),所以实际上Storm等实时任务的资源使用相比离线MapReduce任务等要大很多,因为离线任务运行完就释放掉所使用的计算、内存等资源,而Storm等实时任务必须一直占有直到被显式的杀掉。Storm具有低延迟、分布式、可扩展、高容错等特性,可以保证消息不丢失,目前Storm, 类Storm或基于Storm抽象的框架技术是实时处理、流处理领域主要采用的技术。

Flink:在数据处理领域,批处理任务和实时流计算任务一般被认为是两种不同的任务,一个数据项目一般会被设计为只能处理其中一种任务,例如Storm只支持流处理任务,而MapReduce, Hive只支持批处理任务。

Apache Flink是一个同时面向分布式实时流处理和批量数据处理的开源数据平台,它能基于同一个Flink运行时(Flink Runtime),提供支持流处理和批处理两种类型应用的功能。Flink在实现流处理和批处理时,与传统的一些方案完全不同,它从另一个视角看待流处理和批处理,将二者统一起来。Flink完全支持流处理,批处理被作为一种特殊的流处理,只是它的数据流被定义为有界的而已。基于同一个Flink运行时,Flink分别提供了流处理和批处理API,而这两种API也是实现上层面向流处理、批处理类型应用框架的基础。大数据分析要学什么

Beam:Google开源的Beam在Flink基础上更进了一步,不但希望统一批处理和流处理,而且希望统一大数据处理范式和标准。Apache Beam项目重点在于数据处理的的编程范式和接口定义,并不涉及具体执行引擎的实现。Apache Beam希望基于Beam开发的数据处理程序可以执行在任意的分布式计算引擎上。

Apache Beam主要由Beam SDK和Beam Runner组成,Beam SDK定义了开发分布式数据处理任务业务逻辑的API接口,生成的分布式数据处理任务Pipeline交给具体的Beam Runner执行引擎。Apache Flink目前支持的API是由Java语言实现的,它支持的底层执行引擎包括Apache Flink、Apache Spark和Google Cloud Flatform。

相关推荐:

《大数据分析方法》、《转行大数据分析师后悔了》、《大数据分析师工作内容》、《学大数据分析培训多少钱》、《大数据分析培训课程大纲》、《大数据分析培训课程内容有哪些》、《大数据分析方法》、《大数据分析十八般工具》

195 评论(15)

john123kong

大大数据开发工程师要学习哪些课程大数据开发工程师要学习哪些大数据开发工程师要学习哪些课程

166 评论(11)

开运潇潇

对于大数据想必了解过的人和想要学习大数据的童鞋都是有所了解的,知道大数据培训相关的一些学习内容都有个大概的了解,但是对于大数据培训学习内容的一些比较详细的内容还是有所差距的,我们学习大数据的主要目的就是未来以后可以到大企业去做相关的工作,拿到客观的薪资。那么这就需要我们了解企业对于大数据技术的需求是什么,大数据培训机构大数据课程内容是否包含这些内容。接下来带大家简单了解一下。

第一阶段Java语言基础,此阶段是大数据刚入门阶段,主要是学习一些Java语言的概念、字符、流程控制等。

第二阶段Javaee核心了解并熟悉一些HTML、CSS的基础知识,JavaWeb和数据库,Linux基础,Linux操作系统基础原理、虚拟机使用与Linux搭建、Shell 脚本编程、Linux 权限管理等基本的 Linux 使用知识,通过实际操作学会使用。

第五阶段 Hadoop 生态体系,Hadoop 是大数据的重中之重,无论是整体的生态系统、还是各种原理、使用、部署,都是大数据工程师工作中的核心,这一部分必须详细解读同时辅以实战学习。

第六阶段Spark生态体系,这也是是大数据非常核心的一部分内容,在这一时期需要了解Scala语言的使用、各种数据结构、同时还要深度讲解spark的一系列核心概念比如结构、安装、运行、理论概念等。

2021大数据学习路线图:

179 评论(13)

嘉怡别墅

1阶段:Java2阶段:JavaEE核心3阶段:Hadoop生态体系4阶段:大数据spark生态体系

113 评论(11)

依钱钱512

大数据工程师培训课程有哪些?目前大数据基础课程需要学习Web标准化网页制作,必备的HTML标记和属性、HTML表格、表单的设计与制作、学习CSS、丰富HTML网页的样式、通过CSS布局和定位的学习、让HTML页面布局更加美观、 ... 大数据工程师培训课程有哪些?目前大数据基础课程需要学习Web标准化网页制作,必备的HTML标记和属性、HTML表格、表单的设计与制作、学习CSS、丰富HTML网页的样式、通过CSS布局和定位的学习、让HTML页面布局更加美观、复习所有知识、完成项目布置等。 除此之外大数据工程师培训课程有哪些? 大数据工程师培训课程第一部分:大数据基础——java语言基础方面 1、Java语言基础 Java开发介绍、熟悉Eclipse开发工具、Java语言基础、Java流程控制、Java字符串、Java数组与类和对象、数字处理类与核心技术、I/O与反射、多线程、Swing程序与集合类 2、 HTML、CSS与Java PC端网站布局、HTML5+CSS3基础、WebApp页面布局、原生Java交互功能开发、Ajax异步交互、jQuery应用 3、JavaWeb和数据库 数据库、JavaWeb开发核心、JavaWeb开发内幕 大数据工程师培训课程第二部分: Linux&Hadoop生态体系 Linux体系、Hadoop离线计算大纲、分布式数据库Hbase、数据仓库Hive、数据迁移工具Sqoop、Flume分布式日志框架 大数据工程师培训课程第三部分:分布式计算框架和Spark&Strom生态体系 1、分布式计算框架 Python编程语言、Scala编程语言、Spark大数据处理、Spark—Streaming大数据处理、Spark—Mlib机器学习、Spark—GraphX 图计算、实战一:基于Spark的推荐系统(某一线公司真实项目)、实战二:新浪网() 2、storm技术架构体系 Storm原理与基础、消息队列kafka、Redis工具、zookeeper详解、实战一:日志告警系统项目、实战二:猜你喜欢推荐系统实战 大数据工程师培训课程第四部分:大数据项目实战(一线公司真实项目) 数据获取、数据处理、数据分析、数据展现、数据应用 大数据工程师培训课程第五部分:大数据分析 —AI(人工智能) Data Analyze工作环境准备&数据分析基础、数据可视化、Python机器学习 1、Python机器学习2、图像识别&神经网络、自然语言处理&社交网络处理、实战项目:户外设备识别分析

85 评论(15)

相关问答