• 回答数

    6

  • 浏览数

    126

michellellll
首页 > 工程师考试 > 数字工程师培训

6个回答 默认排序
  • 默认排序
  • 按时间排序

小兔子好好

已采纳

想要学习大数据开发,第一件事并不是要找书籍或者是找视频教程,而是要了解一下大数据行业前景,了解一下成为大数据工程师需要具备什么样的能力,掌握哪些技能我当初学习大数据之前也有过这样的问题,作为一个过来人,今天就跟大家聊下大数据人才应该具备的技能。首先我们要知道对于大数据开发工程师需要具备的技能,下面我们分别来说明: 用人单位对于大数据开发人才的能力要求有技能要求:1.精通JAVA开发语言,同时熟悉Python、Scala开发语言者优先;2.熟悉Spark或Hadoop生态圈技术,具有源码阅读及二次开发工作经验;精通Hadoop生态及高性能缓存相关的各种工具,有源码开发实战经验者优先;3.熟练使用SQL,熟悉数据库原理,熟悉至少一种主流关系型数据库;熟悉Linux操作系统,熟练使用常用命令,熟练使用shell脚本;熟悉ETL开发,能熟练至少一种ETL(talend、kettle、ogg等)转化开源工具者优先;4.具有清晰的系统思维逻辑,对解决行业实际问题有浓厚兴趣,具备良好的沟通协调能力及学习能力。以上就是想要成为大数据人才需要具备的技能那么如何具备这些能力,怎么学习了,对于大多数人来说,目前只有通过参加大数据的学习,才能够系统的掌握以上的大数据技能,从而胜任大数据工程师的工作。

数字工程师培训

167 评论(10)

hellosnow.

IT培训的课程方向有:Web前端,Java、大数据、UI设计、Python……等方向,根据学科方向不同所学内容也是大有不同的。IT培训主要是学习符合企业开发所需的技术,能够在培训后较好的适应开发工作。

137 评论(9)

我与食俱进

大数据技术体系庞大,包括的知识较多

1、学习大数据首先要学习Java基础

Java是大数据学习需要的编程语言基础,因为大数据的开发基于常用的高级语言。而且不论是学hadoop

2、学习大数据核心知识

Hadoop生态系统;HDFS技术;HBASE技术;Sqoop使用流程;数据仓库工具HIVE;大数据离线分析Spark、Python语言;数据实时分析Storm;消息订阅分发系统Kafka等。

3、学习大数据需要具备的能力

数学知识,数学知识是数据分析师的基础知识。对于数据分析师,了解一些描述统计相关的内容,需要有一定公式计算能力,了解常用统计模型算法。而对于数据挖掘工程师来说,各类算法也需要熟练使用,对数学的要求是最高的。

4、学习大数据可以应用的领域

大数据技术可以应用在各个领域,比如公安大数据、交通大数据、医疗大数据、就业大数据、环境大数据、图像大数据、视频大数据等等,应用范围非常广泛。

129 评论(8)

菲歐娜小盆友

It培训有很多门,比如说开发岗的软件开发工程师 前端开发工程师 测试岗的软件测试,运维岗的Linux运维云计算运维等等。

171 评论(15)

燕园小西

1.找出过去事件的特征大数据工程师一个很重要的工作,就是通过分析数据来找出过去事件的特征。比如,腾讯的数据团队正在搭建一个数据仓库,把公司所有网络平台上数量庞大、不规整的数据信息进行梳理,总结出可供查询的特征,来支持公司各类业务对数据的需求,包括广告投放、游戏开发、社交网络等。找出过去事件的特征,最大的作用是可以帮助企业更好地认识消费者。通过分析用户以往的行为轨迹,就能够了解这个人,并预测他的行为。“你可以知道他是什么样的人、他的年纪、兴趣爱好,是不是互联网付费用户、喜欢玩什么类型的游戏,平常喜欢在网上做什么事情。”腾讯云计算有限公司北京研发中心总经理郑立峰说。下一步到了业务层面,就可以针对各类人群推荐相关服务,比如手游,或是基于不同特征和需求衍生出新的业务模式,比如微信的电影票业务。2.预测未来可能发生的事情通过引入关键因素,大数据工程师可以预测未来的消费趋势。在阿里妈妈的营销平台上,工程师正试图通过引入气象数据来帮助淘宝卖家做生意。“比如今年夏天不热,很可能某些产品就没有去年畅销,除了空调、电扇,背心、游泳衣等都可能会受其影响。那么我们就会建立气象数据和销售数据之间的关系,找到与之相关的品类,提前警示卖家周转库存。”薛贵荣说。在百度,沈志勇支持“百度预测”部分产品的模型研发,试图用大数据为更广泛的人群服务。已经上线的包括世界杯预测、高考预测、景点预测等。以百度景点预测为例,大数据工程师需要收集所有可能影响一段时间内景点人流量的关键因素进行预测,并为全国各个景点未来的拥挤度分级—在接下来的若干天时间里,它究竟是畅通、拥挤,还是一般拥挤?3.找出最优化的结果根据不同企业的业务性质,大数据工程师可以通过数据分析来达到不同的目的。以腾讯来说,郑立峰认为能反映大数据工程师工作的最简单直接的例子就是选项测试(AB Test),即帮助产品经理在A、B两个备选方案中做出选择。在过去,决策者只能依据经验进行判断,但如今大数据工程师可以通过大范围地实时测试—比如,在社交网络产品的例子中,让一半用户看到A界面,另一半使用B界面,观察统计一段时间内的点击率和转化率,以此帮助市场部做出最终选择。

292 评论(10)

枫叶e宝宝

数据分析工程师+培训?结构介绍如下:

了解数据采集的意义在于真正了解数据的原始面貌,包括数据产生的时间、条件、格式、内容、长度、限制条件等。这会帮助数据分析师更有针对性的控制数据生产和采集过程,避免由于违反数据采集规则导致的数据问题;同时,对数据采集逻辑的认识增加了数据分析师对数据的理解程度,尤其是数据中的异常变化。

Omniture中的Prop变量长度只有100个字符,在数据采集部署过程中就不能把含有大量中文描述的文字赋值给Prop变量(超过的字符会被截断)。

在Webtrekk323之前的Pixel版本,单条信息默认最多只能发送不超过2K的数据。当页面含有过多变量或变量长度有超出限定的情况下,在保持数据收集的需求下,通常的解决方案是采用多个sendinfo方法分条发送;而在325之后的Pixel版本,单条信息默认最多可以发送7K数据量,非常方便的解决了代码部署中单条信息过载的问题。

当用户在离线状态下使用APP时,数据由于无法联网而发出,导致正常时间内的数据统计分析延迟。直到该设备下次联网时,数据才能被发出并归入当时的时间。这就产生了不同时间看相同历史时间的数据时会发生数据有出入。

在数据采集阶段,数据分析师需要更多的了解数据生产和采集过程中的异常情况,如此才能更好的追本溯源。另外,这也能很大程度上避免“垃圾数据进导致垃圾数据出”的问题。

339 评论(11)

相关问答